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The coupled effects of global
climate change and population
dynamics on water systems are
widely considered to be among
the greatest urban sustainability
challenges facing humanity in the
Anthropocene.






IPCC has consistently reported, with high confidence, that the hydrologic effects of
climate change in the West will be negative and significant (Jiménez Cisneros et al.
2014)

RCP 2.6 RCP 8.5
(a) Change in average surface temperature (1986-2005 to 2081-2100)
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b Change in average precipitation (1986-2005 to 2081-2100)
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Warming, droughts, reduced snowpack, and decreased river flows are consistent with
anthropocentric climate change and may be occurring faster than predicted (Overpeck
and Udall, 2010)
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CLIMATE CHANGE

Dry Times Ahead

Jonsthan Overpeck’ and Bradley UdalF

n the past decade, it has became impos-
Islble to averlook the signs of climate
change in western North America. They
inchude soaring temperatures, declining late-
season snowpack, northward-shifted winter
storm tracks, increasing precipitation inten-
sity, the worst drought since measurements
‘began. steep declines in Colorado River reser-
vioir storage, widespread vegetation mortality,
and sharp increases in the Frequency of large
wildfires. Thesc shifts have taken place across
aregion that also saw the nation's highest pop-
ulation growth during the same period.

The climate changes in western North
Amenica, particularly the Southwest, have
outstripped change elsewhere on the conti-
nent, save perhaps in the Arctic. In the past
decade, many locations, notably in the head-
waters region of the Colerado River, have
bbeen moee than 1°C warmer than the 20th-

limate Assermant of the Sosthwest, Univarsity of Ari-
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UISA, “Western Weter Assassment, Uiversity of Colorade,
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century average. This warming has been the
primary driver in reducing late-season snow-
pack and the snnual flow of the Colorado
River (1. 2). These reductions, coupled with
the most severe drought observed since 1900,
have caused the biggest regional water res-
ervoirs—Lake Powell and Lake Mead—to
decline from nearly full in 1999 to abow 50%
full in 2004; there has been no substantial
recovery since. All of these changes, as well
as dramatic warming and drying clsewhere
in the region and deep into Mexico, are con-
sistent with projected anthropogenic climate
change, but seem to be occurring faster than
projected by the most recent national (2) and
international (3) climate change assessments;
this could indicate that substantially more
severe warming and drying lies ahead.

The land surface of the West is also
changing at a rate that is unprecedented since
systematic monitoring began in the 20th
century. Background tree mortality rates in
western U5, forests have increased rapidly
in recent decades (4), and more than a mil-
Tion hectares of pifion pine mortality in the
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The climate of the western United States
could become much drier over the course
af this century.
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The present drought in the West is the most extreme in over a century
(Cayan et al. 2010), affecting not only surface-water storage but also
groundwater reserves (Castle et al. 2014).
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Water levels in the major Colorado River
reservoirs are at historic lows

WATER LEVEL 1,086.80

Tuesday, February 7, 2017

Image Credit: Mark Henle,
Arizona Republic



Future drought may exceed even the driest centuries of the Medieval

Climate Anomaly, leading to unprecedented drought conditions
(Cook et al., 2015)

CMIP5 Drought Prolectlons (RCP 8 5, 2050-2099 CE)

A ‘megadrought’ will grip U.S. in the coming
decades, NASA researchers say
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By Darryl Fears M

The long and severe drought in the U.S. Southwest pales in comparison with what’s coming: a

“megadrought” that will grip that region and the central Plains later this century and probably stay there for

Fig. 1 Top: Multimodel mean summer (JJA) PDSI and standardized soil moisture (SM-30cm and SM-2m) over
North America for 2050-2099 from 17 CMIP5 model projections using the RCP 8.5 emissions scenario.
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Given environmental and
socletal uncertainties, how
can cities dependent on the
CRB develop
transformational solutions to
iImplement water
sustainability transitions?



Decision making under uncertainty

Sustainability 2015, 7, 14761-14784; doi:10.3300/su71114761 ”S e CO n d , t h e re i S a n e e d fo r m O re

OPEN ACCESS

sustainability research that is not only place-

188 0
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based but also comparative (e.g.,

and Urban Climate Chonge Adaptaton cross-site, cross-ecosystem, cross-

KL Lo 41D B e o e Vs cultural) to advance sustainability

| science. Such research will be

essential in identifying both context-
specific and generalizable patterns

and relationships.

28 October 2013 / Published: 4 November 2015

e Third, we should increase our focus
of complex water including nncertainties,

s e e s ptcds o, e gy o on understanding and informing
R sustainability transitions in ways that
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Transformational
Solutions for Urban
Water Sustainability
Transitions
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In the grips of long-term drought, the Colorado
River Basin and the cities that rely on its water
face unprecedented challenges and significant
uncertainty with a warming climate and large-
scale land-use change. They are developing new
water-resource policies for a future of increasing
uncertainty.

ASU chosen to lead national
nanotechnology site

The power of data and the future
of warfare

featured

Now, water managers and decision makers of
cities of the Colorado River Basin will be able to
take greater advantage of Arizona State
University's Decision Center for a Desert City
(DCDC) thanks to a new $4.5 million National

Science Foundation award. A new National Science Foundation grant will allow ASU to expand the
geographic scope of Decision Center for a Desert City's work beyond
Phoenix to include other cities dependent on Colorado River water

The four-year award, the third made to DCDC in
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Urban Sustainability Transitions

* Traditional water governance regimes are ill-equipped to
respond to these challenges

— expert-driven, overly bureaucratic, and rely on technocratic and
hard-path engineering solutions

— suffer from path dependence and lack institutional incentives to
consider transformational changes

 While managing transitions requires understanding
biophysical drivers and constraints on systems, our focus is

on decision making, institutional dynamics, governance,
and multi-sector coordination

— managing transitions toward urban water sustainability in an era
of climate change requires innovative approaches to governance
that are anticipatory, adaptable, just, and evidence-supported
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Table 1. Contrasting elements of adaptation and transformation.

Adaptation

Transformation

Incremental change

Respond to shock

Maintain previous order

Build adaptive capacity

Emergent properties guide trajectory

Major, potentially fundamental, change
Action in anticipation of major stresses

Create new order, open ended

Reorder system dynamics

Build agency, leadership, change agents

Table 2. Contrasting elements of resilience and sustainability.

Resilience Theory Approach

Sustainability Science Approach

Change is normal, multiple stable states
Experience adaptive cycle gracefully

Origin in ecology, maintain ecosystem services
Result of change is open ended, emergent
Concerned with maintaining system dynamics
Stakeholder input focused on desirable dynamics

Envision the future, act to make it happen

Utilize transition management approach

Origin in social sciences, society is flawed

Desired results of change are specified in advance
Focus is on interventions that lead to sustainability
Stakeholder input focused on desirable outcomes

Redman, C. (2014). Should sustainability and resilience be combined or remain distinct

pursuits?. Ecology and Society, 19(2).
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Solutions Framework for Transitions

We use the term solution to refer to both substantive changes
made to socio-ecological-technical systems (outcomes) and the
path that led to the changes (process)

The framework enables specific knowledge to be constructed about

individual potential water solutions consisting of three distinct
knowledge areas:

— a. What is the effectiveness and efficiency of a water solution?
— b. What is the cause of a water solution?
— c¢. What is the scalability and transferability of a water solution?

The framework supports generalization of knowledge on water
solutions through meta-analyses based direct comparison of water
solutions without losing important context information

Framework is structured into four modules with goal to guide
inventorying, analyzing, evaluating, and extrapolating solutions
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Environmental Uncertainties Societal Uncertainties
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Figure 3. Integrated analytical framework for theory of decision making under multiple uncertainties to inform water
sustainability transitions in the CRB.



Regional Climate and |IPA 1

Land-Use Changes as
Biophysical Drivers of
Urban Water Systems
Decision Making
Under Uncertainty
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Model Projections
Near Future (2010-2040)

Biophysical and Environmental Systemy)  Model Validtion Activities

Regional Climate -~ (1980-2010)
> Downscaling with " 3
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Social-Institutional Strategies (IPA 4, WaterSim) Social-Institutional
Feedback (Land Cover) Feedbacks (Policies)
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Actors, Institutions,
and Governance as
Socioeconomic
Drivers of and
Constraints on Urban
Water Systems
Decision Making

o

Kelli Larson Amber Wutich Michael Hanemann
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Actors, Institutions, and Governance

Toward water sensitive cities o
in the Colorado River basin: A -
comparative historical analysis = ‘
to inform future water
sustainability transitions

Climate adaptation framing
and discourse in Phoenix,
Denver, and Las Vegas

Urban water demand:
Sustainability challenges and
transformational solutions of
academic scientists, water

2016 DCDC Urban Water Demand Roundtable

. Denver, Co
consultants, and utility
Managers
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1990s

A

Denver & Colorado

1997 Denver Water
issued a new
Conservation Master
Plan including water
conservation strategies.
The strategies were
informed in part by the
Citizens Advisory
Committee

Las Vegas & Nevada

1991 The Southern Nevada
Water Authority was
established, with responsibility
for addressing long term water
needs and concerns

1993 The Las Vegas Valley
Water District officially became
the manager of the Southern
Nevada Water Authority

1995 The first conservation
plan forthe Las Vegas region
was developed by the Las
Vegas Valley Water District,
the Southem Nevada Water
Authority, and other agencies

Arizona

Phoenix &

1993 The Central Arizona
Groundwater Replenishment
District was established

1994 The Salt River Project
began a water banking project
as part of Arizona’s efforts to
maximize its allocation of
Colorado River water

1995 The Arizona Department
of Water Resources’rules
requiring water usersto
establish their water use “is
from an assured or adequate
water supply” became active

1996 The Arizona Water
Banking Authority was created
in an effortto allow Arizona to

maximize its use of its water
from the CAP

1996 The height of the
Theodore Roosevelt Dam was
increased for safety and to
prepare forgreater water
demand in the Phoenix metro
area

1999 The Secretary of the Interior issued regulations that allowed interstate water banking among
the lower basin Colorado River states



(A\ 2000 The Colorado River Interim Surplus Guidelines were adopted by the U.S. Bureau of
- Reclamation, detailing what constitutes surplus conditions in the Colorado River’s lower basin

2002 A severe drought hit
Colorado, one the worstin
the state’s history, and
Denver Water enforced
mandatory water
restrictions

2004 Denver Water
opened a recycled water
treatment plant to provide
recycled wastewater to
industrial and agricultural
parties

Denver & Colorado

2006 Denver Water began
a new water conservation
advertising campaign,
entitled “Use Only What
You Need”

2000s

Las Vegas & Nevada

2002 More than a million
people were officially served
by the Las Vegas Valley
Water District

2007 The official preservation
site forthe Las Vegas
Springs, the Springs
Preserve, was opened

2003 The Governor’s
Drought Task Force was
established

2005 The Arizona legislature
enacted the Community
Water System planning and
reporting requirements

2007 The Arizona legislature
iIssued mandatory water
adequacy regulations

2007 The Seven Basin States’ Affirmation Agreement for Colorado River management was finalized.
The U.S. Bureau of Reclamation implemented guidelines (through 2026) for management of lakes

- Mead and Powell

2009 The draft
Environmental Impact
Statement for Denver
Water’s proposal to raise
Gross Dam by 125 feet
was released




Simulation Modeling,
Visual Analytics, and
Scenarios for
Integrating &
Exchanging
Knowledge
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Anticipatory Modelling

Model developed in participatory
process with stakeholders to
explore uncertainty

Simulated business-as usual
(BAU) and mega-drought (MD)
conditions in modern Phoenix
from 2000 to 2060

Metrics focused on groundwater

Policy, planning, and
management interventions (i.e.,
solutions) derived from
stakeholder engagement and
research focused including
historical analysis, narrative
analysis, sustainability appraisal,
survey research

Contents lists available at ScienceDiract
Sustainable Cities and Society

journal homepage: vier.com/locate/scs

Urban adaptation to mega-drought: Anticipatory water modeling,
policy, and planning for the urban Southwest

Patricia Gober™*, David A. Sampson®, Ray Quay®, Dave D. White ™", Winston T.L. Chow*
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W. T. (2016). Urban adaptation to mega-drought: Anticipatory
water modeling, policy, and planning for the urban
Southwest. Sustainable Cities and Society, 27, 497-504.
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Evidence-Supported
Transition Strategies
towards Sustainable

Water Governance
IPA 4

“Julie AnnWrigl ‘Decision Center
% Globalﬁstituteof Sustairgbigyy % for a Desert Clty

Arizona State University Arizona State University



Evidence-supported
Transition Strategies

* Inventory of 150+ water
solutions (outcomes and A
p rO C e S S e S | n C I u d | n g Inventorying, Analyzing, Evaluating, and Extrapolating

Sustainable Integrated Water Solutions

technologies, infrastructure,
governance arrangements,
behavior, etc.)

e 17 water solution case studies
completed

e Studying transfer and scaling
water-sensitive housing in
Phoenix, Denver, Las Vegas
(interviews and modeling)

e Collaborating with
stakeholders in Phoenix and
Denver for pilot projects

Arnim Wiek, Nigel Forrest
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Conclusions and Discussion
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Conclusions and Discussion

* Hydro-climate risks require
incremental and transformational
solutions to inform transitions for
CRB-dependent cities

 Managing sustainability transitions
requires understanding of historical,
social, and political processes to

* Understanding the circumstances
surrounding takeoff in past
transitions is critical to learning how
to catalyze and influence the CAP System Use Agreement
breakthrough of future transitions

* Transition management relies on
understanding, identifying, and
taking advantage of “policy windows’

 The transition process requires more
effective integration of multiple
systems of knowledge and action

)
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Transformational Solutions for Climate Change Adaptation
and Water Sustainability in the Colorado River Basin

Dave D. White
Professor, School of Community Resources and Development
Director, Decision Center for a Desert City
Arizona State University
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