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Traditional Decision Analysis — Maximize Expected Utility
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Climate Science Centric — Top Down
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Premises: Decision Scaling

Stakeholder driven process that is responsive to the factors
most relevant to a decision

Exhaustive exploration of future conditions — “Stress test”
Ability to identify and select robust strategies
Key scenarios emerge from the analysis

Understand sensitivity to climate change (not climate change
projetions)



Decision-Scaling
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Decision-Scaling

3. Evaluate climate
informed risk
scenarios

2. “Climate
Stress Test”

1. Stakeholder

defined Risks

Do projections indicate these conditions
are likely?

Are projections credible in simulating these
conditions?

How robust is the system?

What are the relative effects of climate and
non-climate factors?



Why the “Climate Stress Test™

General Circulation Model (GCM) projections were not
designed to evaluate vulnerabilities

They are inefficient samplers of climate change for vulnerability
analysis

They have biases that may leave climate risks unexposed.

Requires high stakes prior choices without knowing
implications (downscaling approach; emissions)

Can incorporate nonclimate factors as well



Climate Stress Test
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Colorado Springs, Colorado, USA

WATER SUPPLY RISK ASSESSMENT
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Colorado Springs Utilities

It's how we're all connected
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Colorado Springs’ Water Supply System
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Colorado Springs (USAFA): CURRENT CONDITIONS
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Colorado Springs (USAFA): Future Conditions
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Colorado Springs (USAFA) Water Assessment

4 * CMIP3 (Older GCMs) * CMIP5 (Newest GCMs)
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L
CSprings Risk Scenarios

- Present Water Demand: None

- Build out population with current per capita usage:

- Precipitation reduction of 5%
OR
- Temperature increase of 2 C
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Evaluating New Hydropower
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Climate and Non-Climate Uncertainties
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Incorporating Non-Climate Factors
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New Dam Risk Scenarios

335 MW 750MW 2000MW
 Electricity price -« Electricity price ¢ Electricity price
less than 0.079 less than 0.079 less than 0.125

USD/kwh USD/kwh USD/kwh
AND AND AND
« Capital Costs « Capital Costs « Capital Costs
double more than 175% more than 140%
of baseline of baseline

In this case, climate change posed no risk to the proposed
developments!
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Conclusions

Current approaches to planning not well adapted for use of
climate information

Climate projections inefficient samplers of future climate; not credible
in variables of most interest

Scenario Planning explores limited set of futures

Decision Scaling combines best aspects of Scenario Planning
and decision analysis
Bottom up approach explores uncertainties of interest to stakeholders
Explores many possible futures; scenarios emerge from the analysis

Scenarios of interest (problematic or otherwise) can be further
investigated and assigned probabilities if needed
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